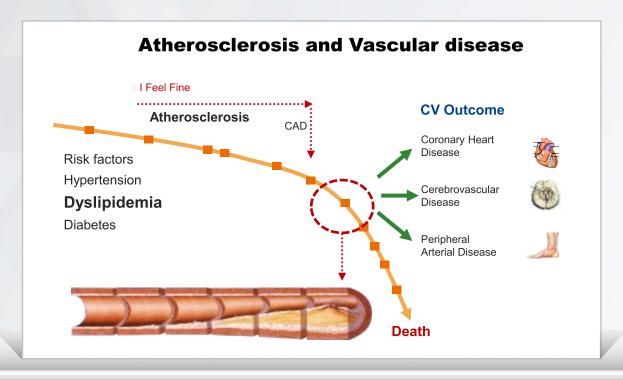


Lower Is Better & Combination Is Better

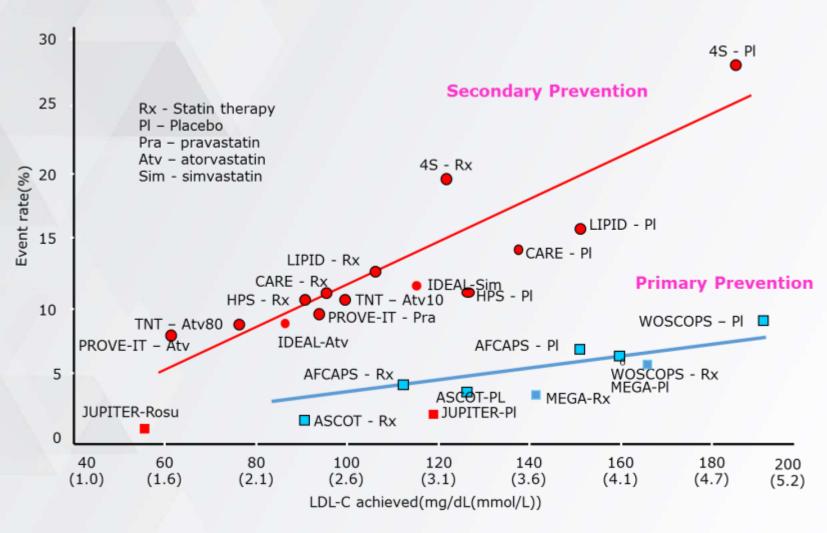
Ann SoeHee, MD
Ulsan University Hospital, Korea


Disclosure

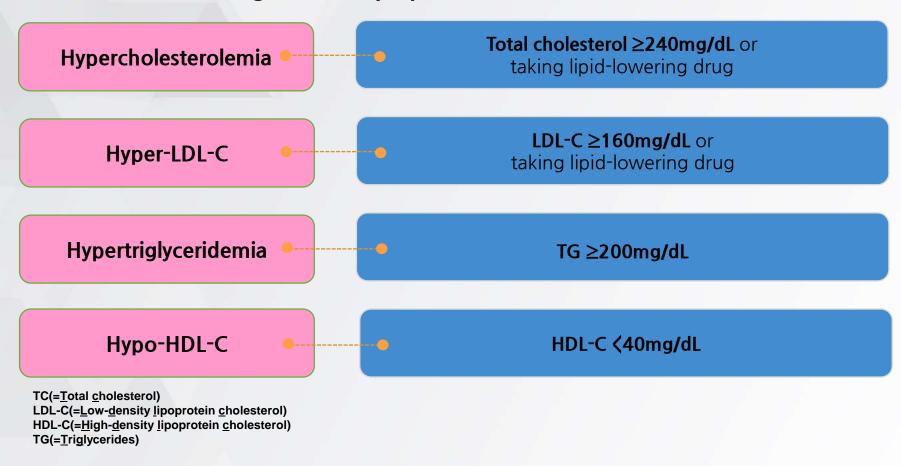
No potential conflicts of interest

Contents

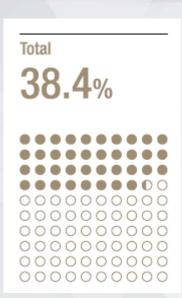
- 1. Importance of dyslipidemia management
 - Dyslipidemia and Cardiovascular disease
 - Guidelines for dyslipidemia
- 2. Another way of lowering LDL-C
 - Superior statin Rosuvastatin
 - Additional benefits from Ezetimibe
- 3. Clinical efficacy and safety of CREZET®

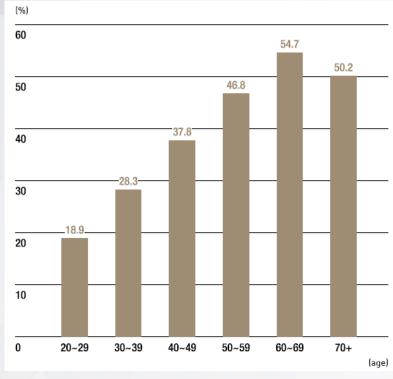

From dyslipidemia to atherosclerosis and vascular disease

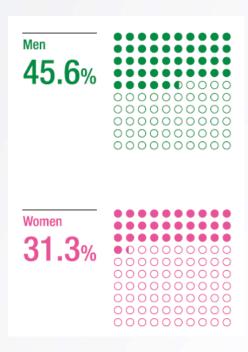
Risk factors	Atherosclerosis	Vascular disease		
☑ Dyslipidemia	☑ Carotid artery	☑ Atherosclerotic Stroke		
☑ DM	☑ Coronary artery	☑ Ischemic heart disease		
☑ Hypertension	☑ Aorta	☑ Peripheral artery disea		


The Lower, the better

<Relationship between LDL-C and CV incidence>

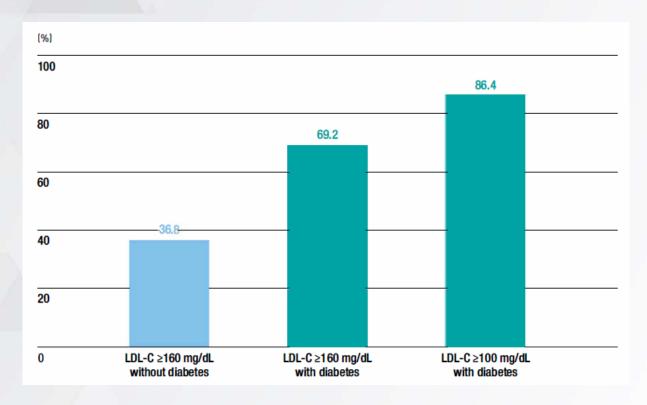

Dyslipidemia Fact Sheets in Korea (2020)


Definition and Diagnosis of Dyslipidemia



Prevalence of Dyslipidemia

- Four out of 10 adults aged 20 years or older had dyslipidemia.
- About 5 out of 10 men and 3 out of 10 women have dyslipidemia.



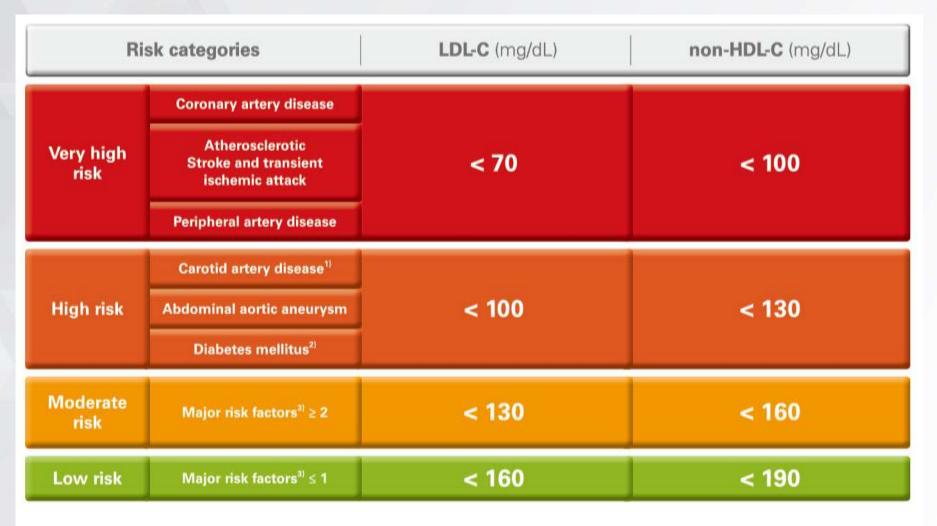
Diabetes and Dyslipidemia

- The prevalence of dyslipidemia in adults with diabetes is <u>2 times higher</u> than that of the adults without diabetes.
- When the LDL-C cut-off value was strictly set to 100 mg/dL, more than 85% of people with diabetes had dyslipidemia.

NCEP ATP III

<LDL-C goals in different risk categories >

Risk Category	LDL-C Goal	
High risk: CHD* or CHD risk equivalents* (10-year risk >20%)	<100mg/dL (optional goal: <70mg/dL) <130mg/dL	
Moderately high risk: 2+ risk factors [‡] (10-year risk 10% to 20%)		
Moderate risk: 2+ risk factors [‡] (10-year risk <10%)	<130mg/dL	
Lower risk: 0-1 risk factor	<160mg/dL	

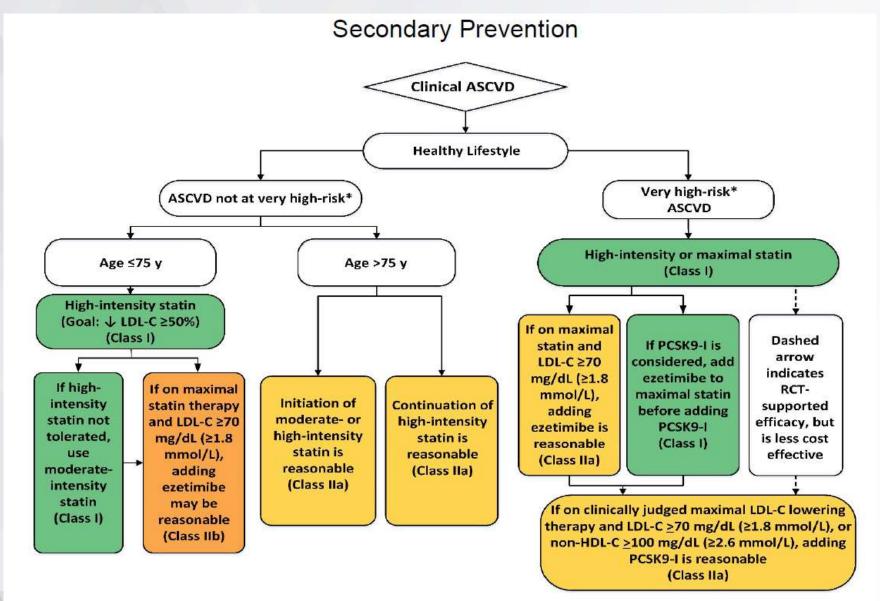

^{*}CHD includes history of myocardial infarction, unstable angina, stable angina, coronary artery procedures(angioplasty or bypass surgery), or evidence of clinically significant myocardial ischemia.

NCEP ATP III(=National Cholesterol Education Program Adult Treatment Panel III)

[†]CHD risk equivalents include clinical manifestations of noncoronary forms of atherosclerotic disease (peripheral arterial disease, abdominal aortic aneurysm, and carotid artery disease [transient ischemic attacks or stroke of carotid origin or >50% obstruction of a carotid artery]), diabetes, and 2+ risk factors with 10-year risk for hard CHD >20%.

[‡]Risk factors include cigarette smoking, hypertension (BP ≥140/90mmHg or on antihypertensive medication), low HDL cholesterol (<40 mg/dL), family history of premature CHD (CHD in male first-degree relative <55 years of age; CHD in female first-degree relative <65 years of age), and age (men ≥45 years; women ≥ 55years).

KSoLA Guideline 2018


¹⁾ In case of significant carotid artery stenosis (which has been shown to be strongly predisposed to clinical events)

LDL-C, low-density lipoprotein cholesterol; non-HDL-C, non-high-density lipoprotein cholesterol; ASCVD, atherosclerotic cardiovascular disease

²⁾ Target goal can be lowered in patients who have target organ damage or major cardiovascular risk factors.

³⁾ Age (men ≥ 45 years, women ≥ 55 years), family history of premature ASCVD, hypertension, smoking, and low HDL cholesterol level

2018 AHA/ACC Guideline on the Management of Blood Cholesterol - Secondary Prevention in Patients With Clinical ASCVD

Changes in ESC/EAS guideline

		Treatment goal for LDL-C (mg/dL)		
		2016	2019	
8	Very-high-risk	〈70 or LDL-C reduction of ≥50% from baseline	 	
CV risk categories	High-risk	〈100 or LDL-C reduction of ≥50% from baseline	<70 and LDL-C reduction of ≥50% from baseline	
	Moderate risk	/445	<100	
	Low risk	<115	<116	

2021 ADA Guideline

The addition of ezetimibe to maximally tolerated statin therapy has been shown to provide additional cardiovascular benefit.

< Recommendations for statin and combination treatment in people with diabetes >

evention				
ASCVD risk factors	Recommended statin intensity*			
ASCVD risk factor(s)** -10-year ASCVD risk≥20%	Initiate-High(multiple factors) - Maximally tolerated statin plus ezetimibe			
None ASCVD risk factors -10-year ASCVD risk≥20%	Moderate High - Maximally tolerated statin plus ezetimibe			
None ASCVD risk factors	Moderate High			
evention				
•	High Maximally tolerated statin plus non-statin therapy (ezetimibe may be preferred due to lower cost)			
	ASCVD risk factor(s)** -10-year ASCVD risk≥20% None ASCVD risk factors -10-year ASCVD risk≥20% None			

In addition to lifestyle therapy.

^{**}ASCVD risk factors include LDL cholesterol ≥100mg/dL(2.6mmol/L), high blood pressure, smoking, overweight and obesity, and family history of premature ASCVD.

2021 ADA Guideline

High-Intensity Statin Therapy	Moderate-Intensity Statin Therapy		
Lowers LDL Cholesterol by ≥50%	Lowers LDL Cholesterol by 30-49%		
Atorvastatin 40–80mg Rosuvastatin 20-40mg	Atorvastatin 10-20mg Rosuvastatin 5-10mg Simvastatin 20-40mg Pravastatin 40-80mg Lovastatin 40mg Fluvastatin XL 80mg Pitavastatin 1-4mg		

^{*}Once-daily dosing.

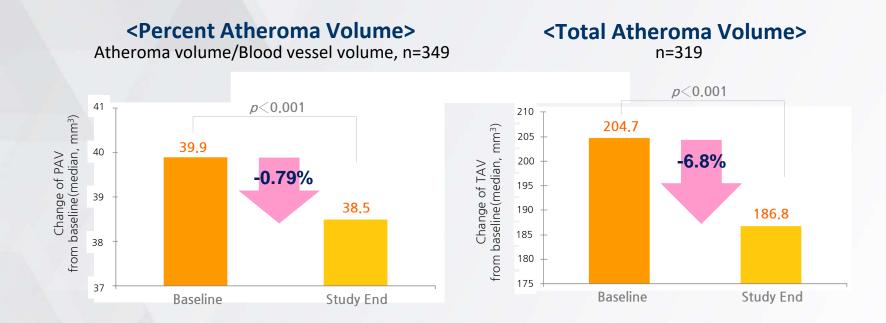
X Low-dose statin therapy is generally not recommended in patients with diabetes but is sometimes the only dose of statin that a patient can tolerate. For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used.

Contents

- 1. Importance of dyslipidemia management
 - Dyslipidemia and Cardiovascular incidence
 - Guidelines for dyslipidemia
- 2. Another way of lowering LDL-C
 - Super-statin Rosuvastatin
 - Additional benefits from Ezetimibe
- 3. Clinical efficacy and safety of CREZET®

STELLAR: Reduction of LDL-C

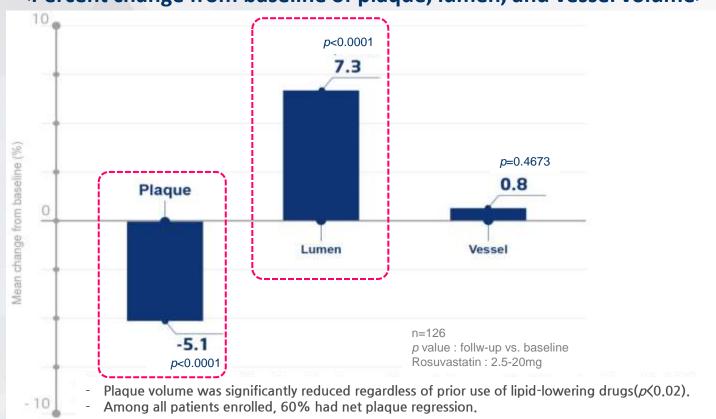
Rosuvastatin produced numerically greater LDL-C reductions.


<Mean percent change from baseline in LDL-C>

STELLAR=Statin Therapies for Elevated Lipid Levels compared Across doses to Rosuvastatin

ASTEROID: Atheroma Volume Regression

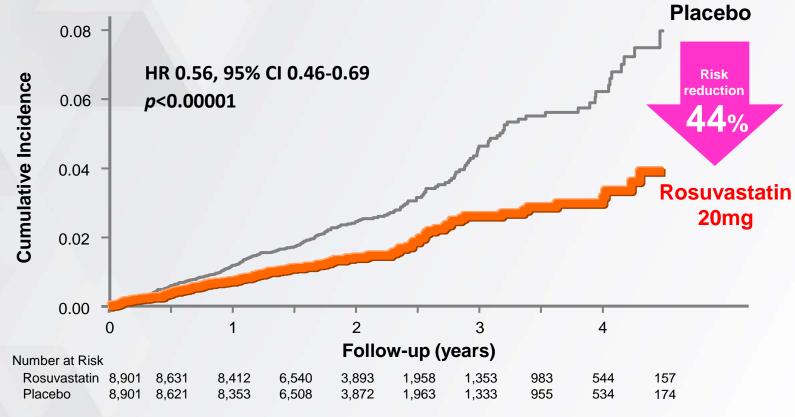
Treatment of rosuvastatin for 24 months was associated With atherosclerosis regression.



ASTEROID=A Study To Evaluate the Effect of ROsuvastatin on Intravascular Ultrasound-Derived Coronary Atheroma Burden

COSMOS: Plaque Volume Regression

Rosuvastatin exerted significant regression of coronary plaque volume in Asian patients with stable CAD*.


<Percent change from baseline of plaque, lumen, and vessel volume>

COSMOS=COronary atherosclerosis Study Measuring effects Of rosuvastatin using intravascular ultrasound in Japanese Subjects

JUPITER trial

<Cumulative incidence of primary end point*>

JUPITER=Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin trial

*Primary end point: Occurrence of a first major cardiovascular event

(nonfatal myocardial infarction, nonfatal stroke, arterial revascularization, hospitalization for unstable angina, or confirmed death from cardiovascular causes)

HOPE-3

- Multicenter, long-term, international, double-blind, randomized, placebo-controlled trial at 228 centers in 21 countries
- 12,705 intermediate risk participants who did not have cardiovascular disease
 Median follow-up 5.6 years
- 2 by 2 factorial design

HOPE-3=Heart Outcomes Prevention Evaluation

December 10mg	Candesar	Rosuvastatin		
Rosuvastatin 10mg	Active	Placebo	Margins	
Active	n=3,180	n=3,181	n=6,361	
Placebo	n=3,176	n=3,168	n=6,344	
Candesartan/HCTZ Margins	n=6,356	n=6,349		

HOPE-3

Outcomes

1st Co-primary Outcome

- Composite of death from CV cause, nonfatal MI, nonfatal stroke

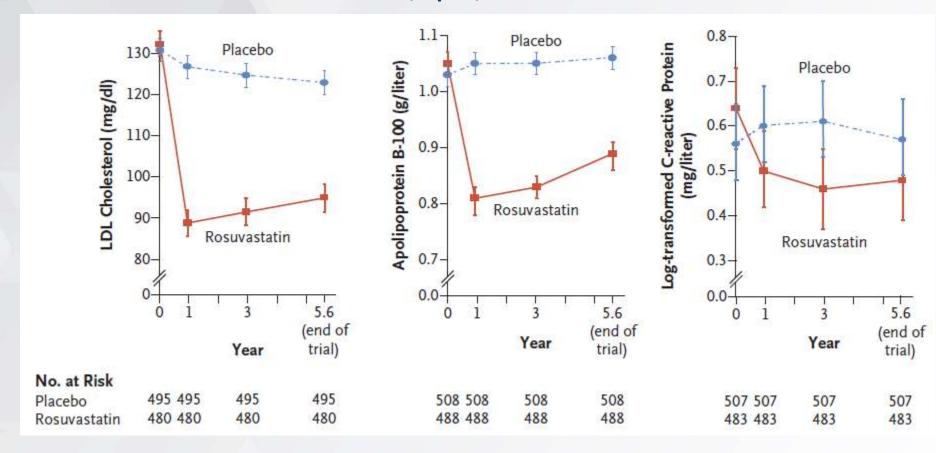
2nd Co-primary Outcome

- Composite 1 + resuscitated cardiac arrest, heart failure, revascularization

HOPE-3: Results ①

Baseline Characteristics of the Participants

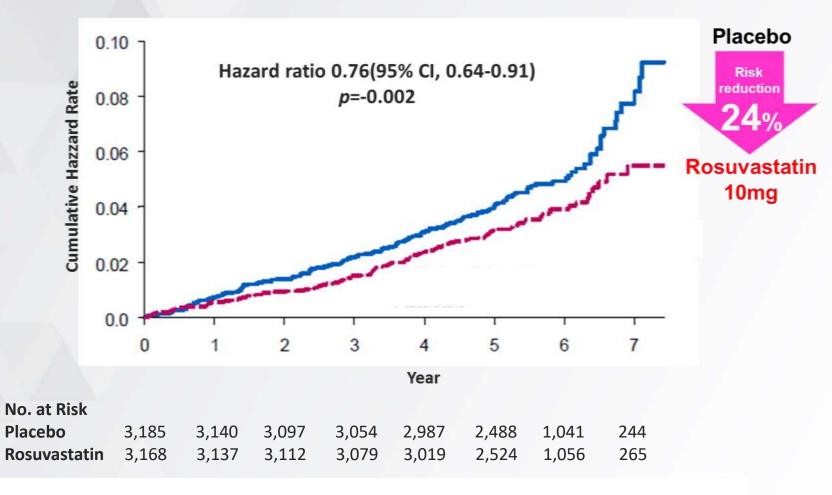
Characteristic	Rosuvastatin Group (N=6361)	Placebo Group (N=6344)
Age — yr	65.8±6.4	65.7±6.3
Female sex — no. (%)	2951 (46.4)	2923 (46.1)
Cardiovascular risk factors — no. (%)		
Elevated waist-to-hip ratio	5540 (87.1)	5494 (86.6)
Recent or current smoking	1740 (27.4)	1784 (28.1)
Low HDL cholesterol level	2344 (36.8)	2244 (35.4)
Impaired fasting glucose or impaired glucose tolerance	809 (12.7)	807 (12.7)
Early diabetes mellitus	374 (5.9)	357 (5.6)
Family history of premature coronary heart disease	1675 (26.3)	1660 (26.2)
Early renal dysfunction	169 (2.7)	181 (2.9)
Hypertension	2403 (37.8)	2411 (38.0)
Presence of 2 risk factors	3002 (47.2)	2924 (46.1)
Presence of ≥3 risk factors	1545 (24.3)	1523 (24.0)
Blood pressure — mm Hg		
Systolic	138.04±14.92	138.06±14.62
Diastolic	81.85±9.38	81.90±9.26


HOPE-3: Results 2

Baseline Characteristics of the Participants(continued)

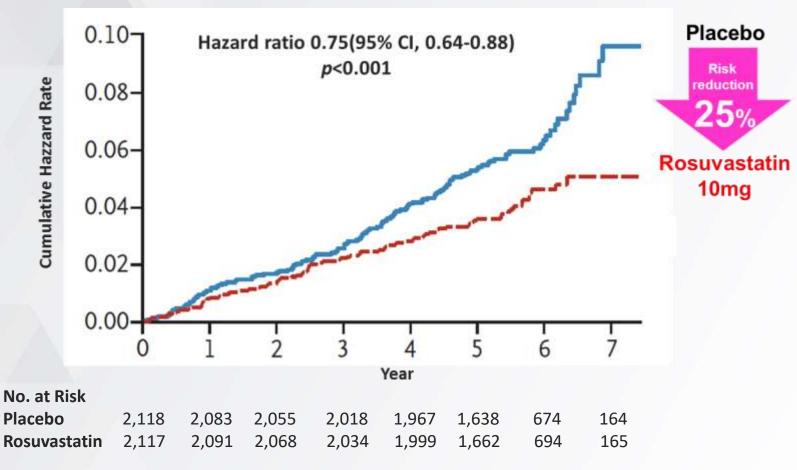
Characteristic	Rosuvastatin Group (N=6361)	Placebo Group (N = 6344)
Race or ethnic group — no. (%)¶		
✓ Chinese	1854 (29.1) 🗸	1837 (29.0)
Hispanic	1744 (27.4)	1752 (27.6)
White	1286 (20.2)	1260 (19.9)
✓ South Asian	927 (14.6) 🗸	927 (14.6)
✓ Other Asian	341 (5.4)	355 (5.6)
Black	113 (1.8)	112 (1.8)
Other	96 (1.5)	101 (1.6)

HOPE-3: Results ③


<Levels of LDL-C, ApoB, and C-Reactive Protein>

HOPE-3: Results 4

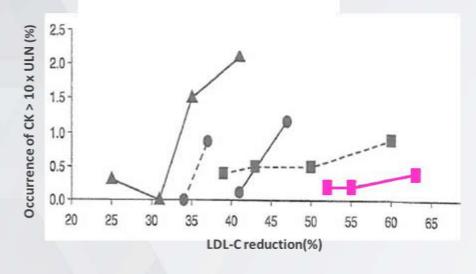
1st Co-primary Outcome


<CV Death, MI, Stroke>

HOPE-3: Results (5)

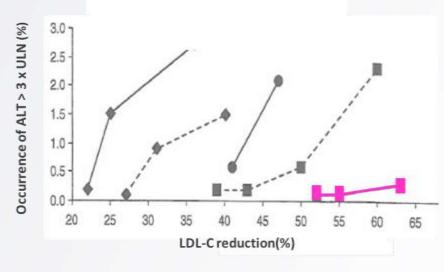
2nd Co-primary Outcome

<CV Death, MI, Stroke, Cardiac Arrest, Revascularization, Heart Failure>


HOPE-3: Conclusions

 Treatment with rosuvastatin at dose 10mg per day resulted in a significantly lower risk of cardiovascular events than placebo in an intermediate-risk, ethnically diverse population without cardiovascular disease.

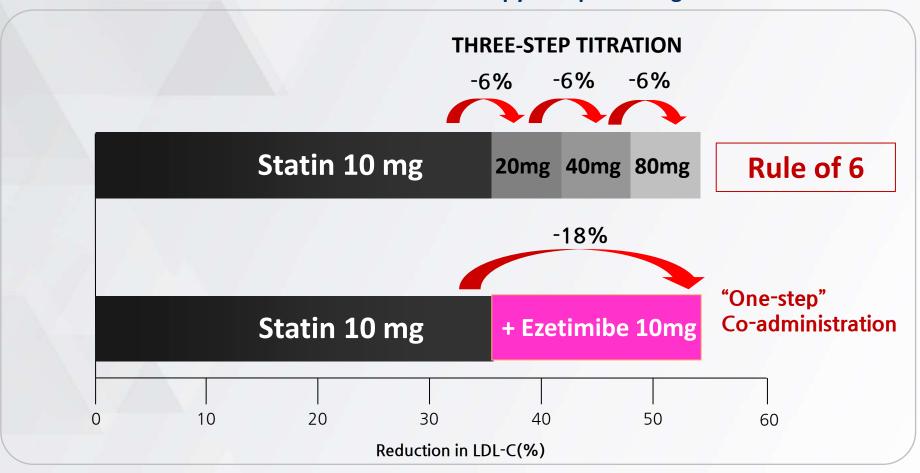
Concern about High Dose Statin


Highest doses statin was associated with increased muscle injury and LFT abnormalities.

Myopathy/Muscle injury (CK > 10X ULN)

- Cerivastatin(0,2, 0,3, 0,4, 0,8mg)
- -- Pravastatin(20, 40mg)
- Simvastatin(40, 80mg)
- -- Atorvastatin(10, 20, 40, 80mg)
- Rosuvastatin(10, 20, 40mg)

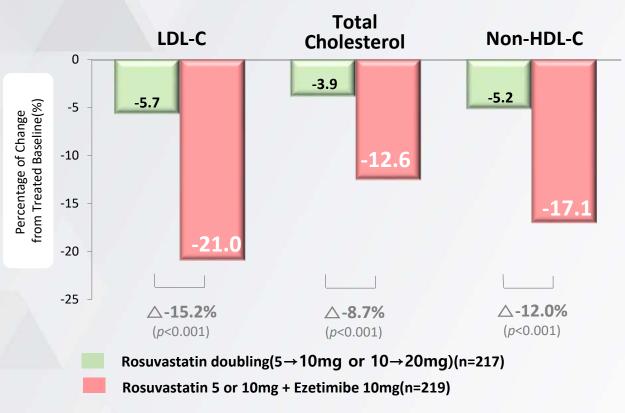
LFT abnormalities (ALT >3X ULN)



- Fluvastatin(20, 40, 80mg)
- - Lovastatin(20, 40, 80mg)
- Simvastatin(40, 80mg)
- -- Atorvastatin(10, 20, 40, 80mg)
- -- Rosuvastatin(10, 20, 40mg)

Ezetimibe add-on vs. Statin doubling

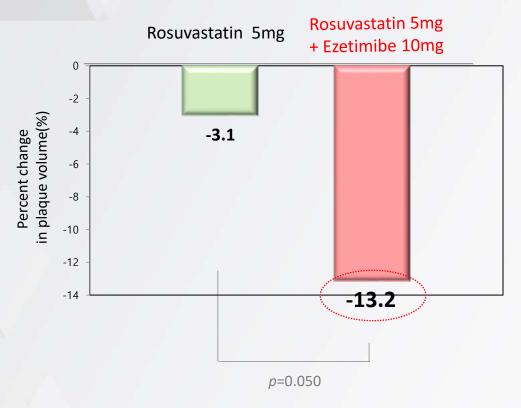
Statin up-titration has limitation on LDL-C reduction.


<New role for combination therapy for lipid management>

ACTE: Ezetimibe add-on vs. Statin doubling

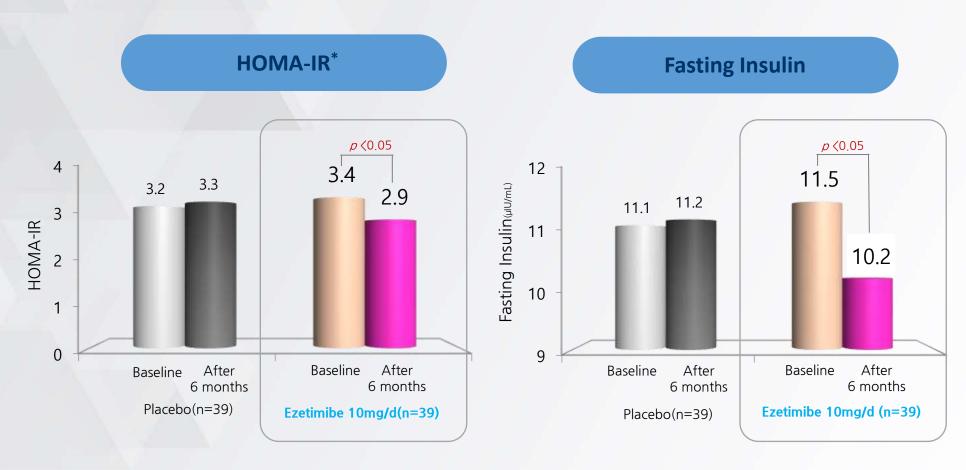
Ezetimibe added to stable rosuvastatin produced greater improvements in many lipid parameters.

<Percent change from treated baseline in lipid parameters>



ACTE=Effic**AC**y and Safe**T**y of **E**zetimibe Added on to Rosuvastatin Versus Up Titration of Rosuvastatin in Hypercholesterolemic Patients at Risk for Coronary Heart Disease

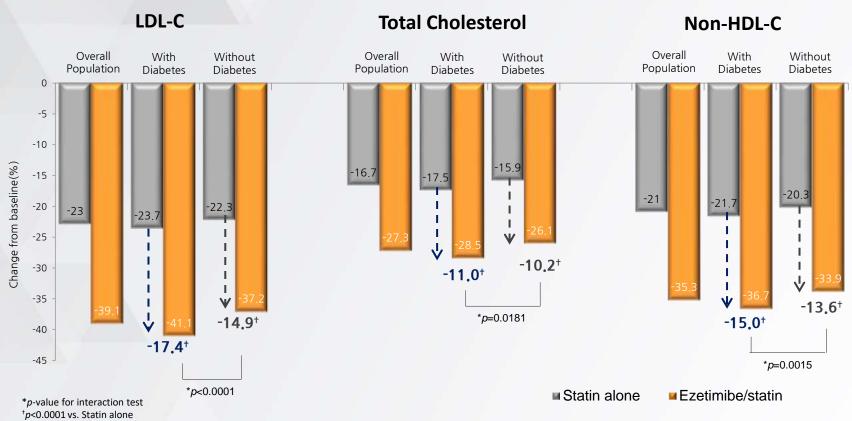
Regression of Coronary Atherosclerosis : Ezetimibe add-on vs. Statin monotherapy


Ezetimibe added to statin may provide significant incremental reduction in coronary plaques compared with statin monotherapy.

<Percent change in plaque volume>

Ezetimibe: Improvement of Insulin Resistance

Ezetimibe reduced fasting insulin and HOMA-IR.



*HOMA-IR(=<u>Ho</u>meostasis <u>M</u>odel <u>A</u>ssessment of <u>I</u>nsulin <u>R</u>esistance)

Lipid-altering efficacy of Ezetimibe/Statin in patients with and without Diabetes

Treatment with Ezetimibe/statin provided significantly larger reductions in LDL-C, total cholesterol and non-HDL-C in patients with diabetes than in patients without diabetes.

<Percent changes from baseline in lipid parameters>

Contents

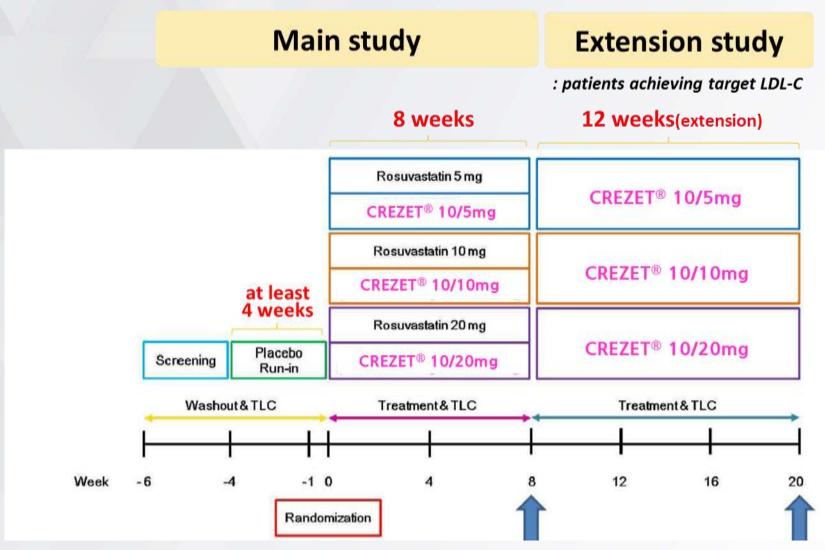
- 1. Importance of dyslipidemia management
 - Dyslipidemia and Cardiovascular incidence
 - Guidelines for dyslipidemia
- 2. Another way of lowering LDL-C
 - Superior statin Rosuvastatin
 - Additional benefits from Ezetimibe
- 3. Clinical efficacy and safety of CREZET®

Phase III Clinical Trial

Object

: Efficacy and safety of Crezet®(Rosuvastatin/ezetimibe) versus rosuvastatin in primary hypercholesterolemia patients

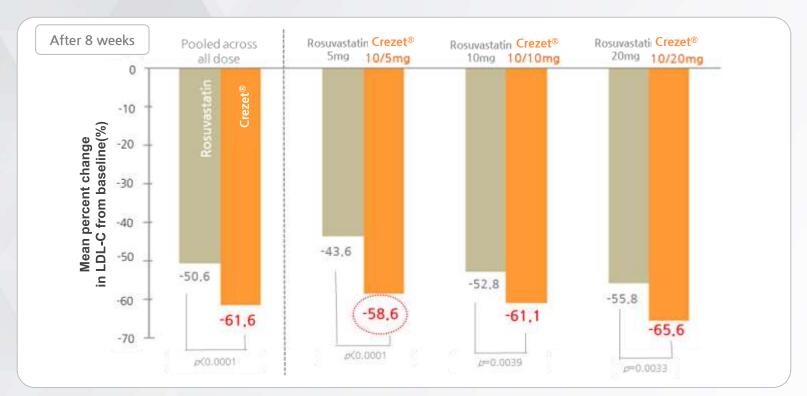
Patients


: **379 primary hypercholesterolemia patients** ≥19 years of age (LDL≤250mg/dL, TG≤350mg/dL)

Study Design

- : Multi-centers, randomized, double-blind, parallel study
 After run-in period of 4 weeks, patients were randomized to receive Crezet® (n=191) or
 Rosuvastatin(n=188) once daily for 8 weeks.
- -Primary end point: the percentage reduction in LDL-C from baseline after 8 weeks of treatment.
- -Secondary end point: the percentage reduction in each lipid profile from baseline after 4 weeks and 8 weeks of treatment, the percentage of patients reaching treatment goal for LDL-C (NCEP ATP III) at 4 weeks and 8 weeks of treatment

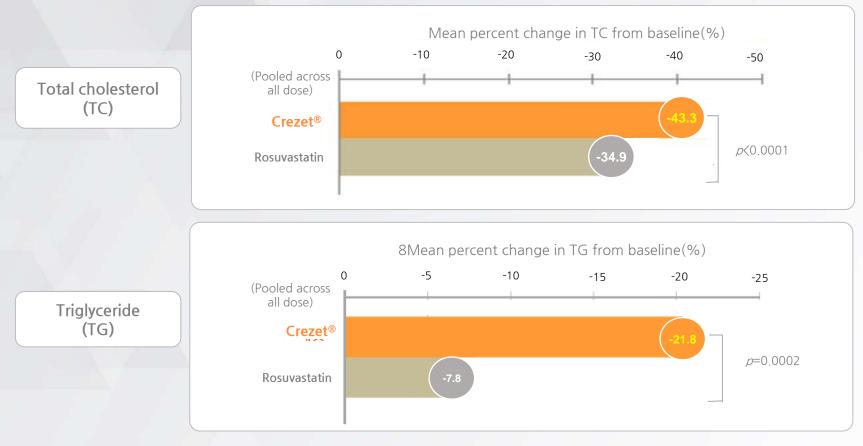
^{*}NCEP ATP III(=National Cholesterol Education Program Adult Treatment Panel III)


Study design

Study Result –LDL-C lowering effect

■ Primary endpoint: (%) Change of LDL-C (8 weeks)

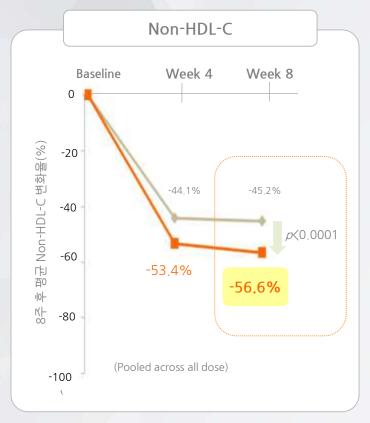
Crezet® provided significantly greater LDL-C reduction compared with corresponding Rosuvastatin doses in phase III clinical study for Korean.

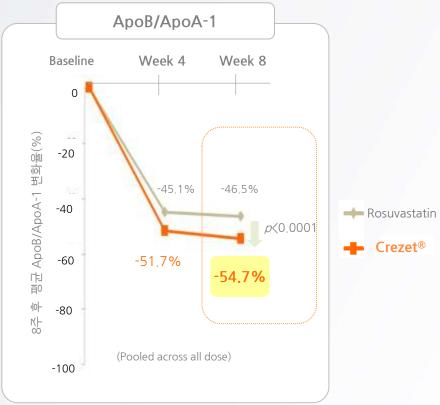


Initial dose of Crezet® provided the LDL-C reduction of ≥50% from baseline.

Study Result – Improvement of lipid profile 1

■ Total Cholesterol and Triglyceride


Crezet® provided significantly greater TC and TG reduction compared with Rosuvastatin monotherapy.



Study Result - Improvement of lipid profile 2

■ Non-HDL-C, ApoB/ApoA-1

Crezet® significantly improved Non-HDL-C and ApoB/ApoA-1 reduction compared with Rosuvastatin monotherapy.

Study Result - Safety

Crezet® was well tolerated in phase III clinical trial for Korean.

Reported adverse events

Adverse Reaction	Rosuvastatin (N=187)			Crezet® (N=190)			Overall
	5mg (N=62) N	10mg (N=62) N	20mg (N=63) N	10/5mg (N=63) N	10/10mg (N=64) N	10/20mg (N=63) N	(N=377) N(%)
Nasopharyngitis	2	0	1	4	1	4	12(3.2%)
Dyspepsia	0	1	1	1	2	1	6(1.6%)
ALT elevations	0	1	0	0	1	3	5(1.3%)
Edema	1	1	0	0	0	2	4(1.1%)
Myalgia	1	0	1	0	2	0	4(1.1%)

Conclusion (1)

- High prevalence rate of dyslipidemia in diabetes
- Recommendation of cholesterol management in guidelines
- Effect of Rosuvastatin on LDL-C reduction and CV prevention (STELLAR, ASTEROID, COSMOS, JUPITER, HOPE-3)
- Concerns for high dose statin (e.i. Myopathy, ALT elevations)
- Additional benefits from ezetimibe in patients with and without diabetes

Conclusion (2)

- Benefits of CREZET
 - Dual action of Rosuvastatin/Ezetimibe combination
 - Significantly reduced LDL-C and improved lipid parameters more than statin monotherapy
 - Low CYP3A4-mediated metabolism
 - Improved patient compliance with once-daily dosing regardless of time

Thank you